87 research outputs found

    Indirectly Named Entity Recognition

    Full text link
    [EN] We define here indirectly named entities, as a term to denote multiword expressions referring to known named entities by means of periphrasis.  While named entity recognition is a classical task in natural language processing, little attention has been paid to indirectly named entities and their treatment. In this paper, we try to address this gap, describing issues related to the detection and understanding of indirectly named entities in texts. We introduce a proof of concept for retrieving both lexicalised and non-lexicalised indirectly named entities in French texts. We also show example cases where this proof of concept is applied, and discuss future perspectives. We have initiated the creation of a first lexicon of 712 indirectly named entity entries that is available for future research.This research has been funded by the FEDER (Fonds europĂ©en de dĂ©veloppement rĂ©gional) and selected by the French-Swiss programme Interreg V. We would like to thank Claire Wuillemin for her preliminary work in the DecRIPT project about the State-of-the-Art in NER and SER in 2020. We would also like to thank for their advice Gilles Falquet, Luka Nerima, Eric Wehrli and Jean-Philippe Goldman at the University of Geneva.Kauffmann, A.; Rey, F.; Atanassova, I.; Gaudinat, A.; Greenfield, P.; Madinier, H.; Cardey, S. (2021). Indirectly Named Entity Recognition. Journal of Computer-Assisted Linguistic Research. 5(1):27-46. https://doi.org/10.4995/jclr.2021.15922OJS274651Abney, Steven. 1987. "The English Noun Phrase in its Sentential Aspect." PhD diss., Massachusetts Institute of Technology.Alsharaf, H., S. Cardey, P. Greenfield, D. Limame, and I. Skouratov. 2003. "Fixedness, the complexity and fragility of the phenomenon: some solutions for natural language processing." In Proceedings of ICL17. Prague, Czech Republic: Matfyzpress.Ananthanarayanan, Rema, Vijil Chenthamarakshan, Prasad M Deshpande, and Raghuram Krishnapuram. 2008. "Rule Based Synonyms for Entity Extraction from Noisy Text." In Proceedings of the Second Workshop on Analytics for Noisy Unstructured Text Data AND '08, 31-38. Singapore: Association for Computing Machinery. https://doi.org/10.1145/1390749.1390756Bachellier, Jean-Louis. 1972. "Sur-Nom." Le texte: de la thĂ©orie Ă  la recherche, no. 19: 69-92. doi :10.3406/comm.1972.1283. https://doi.org/10.3406/comm.1972.1283Baldwin, Timothy, and Su Nam Kim. 2013. "Multiword Expressions." In Handbook of Natural Language Processing, Second Edition, edited by Nitin Indurkhya and Fred J. Damerau, 267-292. Boca Raton, USA: CRCPress.Bohn, C., and Kjeti NĂžrvag. 2010. "Extracting Named Entities and Synonyms from Wikipedia." In Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications, 1300-1307. https://doi.org/10.1109/AINA.2010.50Cai, Desheng, and Gongqing Wu. 2019. "Content-aware attributed entity embedding for synonymous named entity discovery." Neurocomputing 329: 237-247. https://doi.org/10.1016/j.neucom.2018.10.055Chakrabarti, K., S. Chaudhuri, T. Cheng, and Dong Xin. 2012. "A framework for robust discovery of entity synonyms." In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1384-1392, Beijing, China: Association for Computing Machinery. https://doi.org/10.1145/2339530.2339743Charton, Eric, Michel Gagnon, and Benoit Ozell. 2011. "GĂ©nĂ©ration automatique de motifs de dĂ©tection d'entitĂ©s nommĂ©es en utilisant des contenus encyclopĂ©diques (Automatic generation of named entity detection patterns using encyclopedic contents)" [in French]. In Actes de la 18e confĂ©rence sur le Traitement Automatique des Langues Naturelles. Articles longs, 13-24. Montpellier, France: ATALA.Cho, Hyejin, Wonjun Choi, and Hyunju Lee. 2017. "A method for named entity normalization in biomedical articles: application to diseases and plants." BMC bioinformatics 18, no. 1 ( 1-12. https://doi.org/10.1186/s12859-017-1857-8Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171-4186. Minneapolis, Minnesota: Association for Computational Linguistics.Friburger, Nathalie. 2006. "Linguistique et reconnaissance automatique des noms propres." Meta 51, no. 4: 637-650. doi:10.7202/014331ar. https://doi.org/10.7202/014331arGuenoune, Hani, Kevin Cousot, Mathieu Lafourcade, Melissa Mekaoui, and CĂ©dric Lopez. 2020. "A Dataset for Anaphora Analysis in French Emails." In Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and Coreference, 165-175. Barcelona, Spain (online): Association for Computational Linguistics.Honnibal, Matthew, and Ines Montani. 2017. "spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing."Kampeera, Wannachai, and Sylviane Cardey-Greenfield. 2012. "Building a Lexically and Semantically-Rich Resource for Paraphrase Processing." In Advances in Natural Language Processing, edited by Hitoshi Isahara and Kyoko Kanzaki, 138-143. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33983-7_14Kauffmann, Alexis. 2013. "Structural Asymmetries in Machine Translation: The case of English-Japanese". PhD diss., UniversitĂ© de GenĂšve. https://doi.org/10.13097/archive-ouverte/unige:34540.Lample, Guillaume, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. "Neural Architectures for Named Entity Recognition." In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 260-270. San Diego, California: Association for Computational Linguistics. https://doi.org/10.18653/v1/N16-1030Lin, Bill Yuchen, Dong-Ho Lee, M. Shen, Ryan Rene Moreno, X. Huang, Prashant Shiralkar, and X. Ren. 2020. "TriggerNER: Learning with Entity Triggers as Explanations for Named Entity Recognition." In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 8503-8511. Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.752Lopez, C., Melissa Mekaoui, K. Aubry, Jean Bort, and Philippe Garnier. 2019. "Reconnaissance d'entitĂ©s nommĂ©es itĂ©rative sur une structure en dĂ©pendances syntaxiques avec l'ontologie NERD." Revue des Nouvelles Technologies de l'Information, Extraction et Gestion des connaissances, RNTI-E-35, 81-92.Ma, Jie, Jun Liu, Y. Li, X. Hu, Yudai Pan, S. Sun, and Qika Lin. 2020. "Jointly Optimized Neural Coreference Resolution with Mutual Attention." In Proceedings of the 13th International Conference on Web Search and Data Mining. Houston, Texas, USA: Association for Computing Machinery. https://doi.org/10.1145/3336191.3371787Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language Processing Toolkit In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55-60. Baltimore, Maryland: Association for Computational Linguistics. https://doi.org/10.3115/v1/P14-5010Martin, Louis, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Villemonte de la Clergerie, Benoıt Sagot, and DjamĂ© Seddah. 2020. "Les modĂšles de langue contextuels CamemBERT pour le français: impact de la taille et de l'hĂ©tĂ©rogĂ©nĂ©itĂ© des donnĂ©es d'entrainement (CamemBERT Contextual Language Models for French: Impact of Training Data Size and Heterogeneity)" [in French]. In Actes de la 6e confĂ©rence conjointe JournĂ©es d'Etudes sur la Parole (JEP, 33e Ă©dition), Traitement Automatique des Langues Naturelles (TALN, 27e Ă©dition), Rencontre des Etudiants Chercheurs en Informatique pour le' Traitement Automatique des Langues (RECITAL, 22e Ă©dition). Volume 2: Traitement Automatique des Langues Naturelles, 54-65. Nancy, France: ATALA et AFCP.Mitkov, Ruslan. 2014. Anaphora resolution. Routledge. https://doi.org/10.4324/9781315840086Mohamed, Muhidin A., and Mourad Chabane Oussalah. 2020. "A hybrid approach for paraphrase identification based on knowledge-enriched semantic heuristics." Language Resources and Evaluation 54 : 457-485. https://doi.org/10.1007/s10579-019-09466-4Nadeau, David, and Satoshi Sekine. 2007. "A survey of named entity recognition and classification." Lingvisticae Investigationes 30: 3-26. https://doi.org/10.1075/li.30.1.03nadNayel, Hamada A., H. L. Shashirekha, Hiroyuki Shindo, and Yuji Matsumoto. 2019. "Improving Multi-Word Entity Recognition for Biomedical Texts." CoRRabs/1908.05691. arXiv:1908.05691.Nebhi, Kamel. 2013. "Named Entity Disambiguation using Freebase and Syntactic Parsing." In [email protected], Damien, Maud Ehrmann, and Sophie Rosset. 2016. "Evaluating Named Entity Recognition." Chap. 6 in Named Entities for Computational Linguistics, 111-129. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119268567.ch6Ortiz Suarez, Pedro Javier, Yoann Dupont, Benjamin Muller, Laurent Romary, and Benoıt Sagot. 2020. "Establishing a New State-of-the-Art for French Named Entity Recognition" [in English]. In Proceedings of the 12th Language Resources and Evaluation Conference, 4631-4638. Marseille, France: European Language Resources Association.Petit, GĂ©rard. 2006. "Le nom de marque dĂ©posĂ©e : nom propre, nom commun et terme." Meta 51, no. 4: 690-705. doi:10.7202/014335ar. https://doi.org/10.7202/014335arQu, Meng, Xiang Ren, and Jiawei Han. 2017. "Automatic Synonym Discovery with Knowledge Bases." In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 997-1005. KDD '17. Halifax, NS, Canada: Association for Computing Machinery. https://doi.org/10.1145/3097983.3098185Racicot, AndrĂ©. 2009. "Traduire le monde: Venise du Nord et autres surnoms." L'ActualitĂ© langagiĂšre, vol. 6, n° 2, 23. Travaux publics et Services gouvernementaux Canada.Rey, François-Claude, and Kauffmann Alexis. 2021. "French indirectly named entities (version 1.3) [Data set]." Zenodo. https://doi.org/10.5281/zenodo.5158253.Rosales-MĂ©ndez, Henry, Aidan Hogan, and Barbara Poblete. 2019. "Fine-Grained Evaluation for Entity Linking." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 718-727. Hong Kong, China: Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1066Sales, Juliano Efson, AndrĂ© Freitas, Brian Davis, and Siegfried Handschuh. 2016. "A Compositional-Distributional Semantic Model for Searching Complex Entity Categories." In Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, 199-208. Berlin, Germany: Association for Computational Linguistics. https://doi.org/10.18653/v1/S16-2025Schmitt, X., S. Kubler, J. Robert, M. Papadakis, and Y. LeTraon. 2019. "A Replicable Comparison Study of NER Software: StanfordNLP, NLTK, OpenNLP, SpaCy, Gate." In Proceedings of the Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), 338-343. https://doi.org/10.1109/SNAMS.2019.8931850Shang, Jingbo, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han. 2018. "Learning Named Entity Tagger using Domain-Specific Dictionary." In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2054-2064. Brussels, Belgium: Association for Computational Linguistics. https://doi.org/10.18653/v1/D18-1230Shen, Jiaming, Ruiliang Lyu, Xiang Ren, Michelle Vanni, Brian Sadler, and Jiawei Han. 2019. "Mining entity synonyms with efficient neural set generation." In Proceedings of the AAAI Conference on Artificial Intelligence, 33:249-256. doi:10.1609/aaai.v33i01.3301249. https://doi.org/10.1609/aaai.v33i01.3301249Shinyama, Yusuke, Satoshi Sekine, and Kiyoshi Sudo. 2002. "Automatic Paraphrase Acquisition from News Articles." In Proceedings of the Second International Conference on Human Language Technology Research, 313-318. HLT '02. San Diego, California: Morgan Kaufmann Publishers Inc. https://doi.org/10.3115/1289189.1289218Sjöblom, Paula. 2016. "Commercial names." Chap. V.31 in The Oxford Handbook of Names and Naming, edited by Carole Hough, 453-464. Oxford, UK: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199656431.013.56Tenney, Ian, Dipanjan Das, and Ellie Pavlick. 2019. "BERT Rediscovers the Classical NLP Pipeline." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4593-4601. Florence, Italy: Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1452Treps, Marie. 2012. La rançon de la gloire - Les surnoms de nos politiques. Paris, France: Editions du Seuil.Watanabe, Taiki, Akihiro Tamura, Takashi Ninomiya, Takuya Makino, and Tomoya Iwakura. 2019. "Multi-Task Learning for Chemical Named Entity Recognition with Chemical Compound Paraphrasing." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 6244-6249. Hong Kong, China: Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1648Wehrli, Eric, and Luka Nerima. 2018. "Anaphora resolution, collocations and translation." In Multiword units in machine translation and translation technology, edited by Johanna Monti, Violeta Seretan, Gloria Corpas Pastor, and Ruslan Mitkov, 244-256. John Benjamins. https://doi.org/10.1075/cilt.341.12wehWehrli, Eric, Violeta Seretan, and Luka Nerima. 2010. "Sentence Analysis and Collocation Identification." In Proceedings of the 2010 Workshop on Multiword Expressions: from Theory to Applications, 28-36. Beijing, China: Coling 2010 Organizing Committee.Weston, L., V. Tshitoyan, J. Dagdelen, O. Kononova, A. Trewartha, K. A. Persson, G. Ceder, and A. Jain. 2019. "Named Entity Recognition and Normalization Applied to Large-Scale Information Extraction from the Materials Science Literature." Journal of Chemical Information and Modeling 59, no. 9: 3692-3702. doi: 10.1021/acs.jcim.9b00470. https://doi.org/10.1021/acs.jcim.9b00470Wu, G., Y. He, and X. Hu. 2018. "Entity Linking: An Issue to Extract Corresponding Entity With Knowledge Base." IEEE Access 6: 6220-6231. doi:10.1109/ACCESS.2017.2787787. https://doi.org/10.1109/ACCESS.2017.2787787Yang, Yiying, Xi Yin, Haiqin Yang, Xingjian Fei, Hao Peng, Kaijie Zhou, Kunfeng Lai, and Jianping Shen. 2021. "KGSynNet: A Novel Entity Synonyms Discovery Framework with Knowledge Graph." In Database Systems for Advanced Applications, edited by Christian S. Jensen, Ee-Peng Lim, De-Nian Yang, Wang-Chien Lee, Vincent S. Tseng, Vana Kalogeraki, Jen-Wei Huang, and Chih-Ya Shen, 174-190. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-73194-6_13Zhang, Ruoyu, Wenpeng Lu, Shoujin Wang, Xueping Peng, Rui Yu, and Yuan Gao. 2021. "Chinese clinical named entity recognition based on stacked neural network." Concurrency and Computation: Practice and Experience : 33:e5775. doi:10.1002/cpe.5775. https://doi.org/10.1002/cpe.577

    Aortic arch reconstruction with pulmonary autograft patch aortoplasty

    Get PDF
    AbstractObjective: The optimal technique for aortic arch reconstruction through median sternotomy is still under debate. We have introduced the technique of pulmonary autograft patch aortoplasty as a reliable alternative. Methods: The outcomes of 51 infants who underwent neonatal repair of interrupted aortic arch (n = 28) or coarctation associated with ventricular septal defect (n = 23) since 1992 were analyzed. The patients were reviewed in three groups according to the aortic arch reconstruction technique: group I underwent direct anastomosis (n = 23), group II underwent homograft or pericardial patch aortoplasty (n = 8), and group III underwent pulmonary autograft patch aortoplasty (n = 20). The pulmonary autograft patch consisted in the anterior wall of the main pulmonary artery, between the supracommissural level and the divided ductus arteriosus. The created defect was replaced with fresh autologous pericardium. Results: All patients except 1 were discharged without significant residual gradient at the level of the aortic arch. At a median delay of 7 months (range 2-51 months), 11 patients (22%) had recurrence of arch obstruction and underwent balloon angioplasty (n = 8) or surgical correction (n = 3). One patient who had undergone direct anastomosis required reoperation for bronchial compression. At a median follow-up of 29 months, the actuarial freedoms from recurrent arch obstruction were 81% for direct anastomosis, 28% for homograft or pericardial patch aortoplasty, and 100% for pulmonary autograft aortoplasty (P =.03 for group III vs group I and P <.0001 for group III vs group II). Conclusions: The aortic arch repair associated with pulmonary autograft patch augmentation resulted in superior midterm outcomes and therefore constitutes a reliable alternative to the direct anastomosis technique. It allowed complete relief of anatomic afterload and diminished the anastomotic tension, thus reducing the risk of restenosis and tracheobronchial compression. We observed a significantly higher rate of recurrence after patch aortoplasty with other materials.J Thorac Cardiovasc Surg 2002;123:443-5

    : Recueil de fiches pédagogiques du réseau MAPS

    Get PDF
    DoctoralLe réseau thématique MAPS «Modélisation multi-Agent appliquée aux Phénomènes Spatialisés » propose depuis 2009 des évènements scientifiques ayant pour but de diffuser les pratiques de modélisations multi-agents au sein des Sciences de l’Homme et de la Société (SHS). Ce collectif pluridisciplinaire de chercheurs, d’enseignants-chercheurs et de doctorants est labellisé en tant que â‰Ș réseau thématique » par le Réseau National des Systèmes Complexes (GIS RNSC) et bénéficie du soutien du CNRS au titre de la Formation Permanente. Depuis 2009, plusieurs modĂšles ont Ă©tĂ© dĂ©veloppĂ©s au cours d'Ă©vĂ©nements MAPS. Ces modĂšles ont fait l'objet de fiches pĂ©dagogiques dĂ©taillĂ©es destinées aux communautés éducatives et universitaires et en particulier aux enseignants qui souhaiteraient faire découvrir la modélisation à leurs étudiants, mais aussi à ceux qui envisagent d’approfondir certains aspects avec un public plus averti. Elles sont également destinées à tous les curieux qui souhaiteraient découvrir ce que la modélisation apporte aux SHS, du point de vue heuristique et du point de vue opérationnel. Enfin, elles sont aussi des supports pour toutes les personnes qui souhaiteraient diffuser les réflexions scientifiques sur la modélisation et la simulation qui ont présidé à la rédaction de ces fiches

    Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve

    Get PDF
    Brain atrophy measured by magnetic resonance structural imaging has been proposed as a surrogate marker for the early diagnosis of Alzheimer's disease. Studies on large samples are still required to determine its practical interest at the individual level, especially with regards to the capacity of anatomical magnetic resonance imaging to disentangle the confounding role of the cognitive reserve in the early diagnosis of Alzheimer's disease. One hundred and thirty healthy controls, 122 subjects with mild cognitive impairment of the amnestic type and 130 Alzheimer's disease patients were included from the ADNI database and followed up for 24 months. After 24 months, 72 amnestic mild cognitive impairment had converted to Alzheimer's disease (referred to as progressive mild cognitive impairment, as opposed to stable mild cognitive impairment). For each subject, cortical thickness was measured on the baseline magnetic resonance imaging volume. The resulting cortical thickness map was parcellated into 22 regions and a normalized thickness index was computed using the subset of regions (right medial temporal, left lateral temporal, right posterior cingulate) that optimally distinguished stable mild cognitive impairment from progressive mild cognitive impairment. We tested the ability of baseline normalized thickness index to predict evolution from amnestic mild cognitive impairment to Alzheimer's disease and compared it to the predictive values of the main cognitive scores at baseline. In addition, we studied the relationship between the normalized thickness index, the education level and the timeline of conversion to Alzheimer's disease. Normalized thickness index at baseline differed significantly among all the four diagnosis groups (P < 0.001) and correctly distinguished Alzheimer's disease patients from healthy controls with an 85% cross-validated accuracy. Normalized thickness index also correctly predicted evolution to Alzheimer's disease for 76% of amnestic mild cognitive impairment subjects after cross-validation, thus showing an advantage over cognitive scores (range 63–72%). Moreover, progressive mild cognitive impairment subjects, who converted later than 1 year after baseline, showed a significantly higher education level than those who converted earlier than 1 year after baseline. Using a normalized thickness index-based criterion may help with early diagnosis of Alzheimer's disease at the individual level, especially for highly educated subjects, up to 24 months before clinical criteria for Alzheimer's disease diagnosis are met

    Late relapse after hematopoietic stem cell transplantation for acute leukemia: a retrospective study by SFGM-TC.

    Full text link
    peer reviewedLate relapse (LR) after allogeneic hematopoietic stem cell transplantation (AHSCT) for acute leukemia is a rare event (nearly 4.5%) and raises the questions of prognosis and outcome after salvage therapy. We performed a retrospective multicentric study between January 1, 2010, and December 31, 2016, using data from the French national retrospective register ProMISe provided by the SFGM-TC (French Society for Bone Marrow Transplantation and Cellular Therapy). We included patients presenting with LR, defined as a relapse occurring at least 2 years after AHSCT. We used the Cox model to identify prognosis factors associated with LR. During the study period, a total of 7582 AHSCTs were performed in 29 centers, and 33.8% of patients relapsed. Among them, 319 (12.4%) were considered to have LR, representing an incidence of 4.2% for the entire cohort. The full dataset was available for 290 patients, including 250 (86.2%) with acute myeloid leukemia and 40 (13.8%) with acute lymphoid leukemia. The median interval from AHSCT to LR was 38.2 months (interquartile range [IQR], 29.2 to 49.7 months), and 27.2% of the patients had extramedullary involvement at LR (17.2% exclusively and 10% associated with medullary involvement). One-third of the patients had persistent full donor chimerism at LR. Median overall survival (OS) after LR was 19.9 months (IQR, 5.6 to 46.4 months). The most common salvage therapy was induction regimen (55.5%), with complete remission (CR) obtained in 50.7% of cases. Ninety-four patients (38.5%) underwent a second AHSCT, with a median OS of 20.4 months (IQR, 7.1 to 49.1 months). Nonrelapse mortality after second AHSCT was 18.2%. The Cox model identified the following factors as associated with delay of LR: disease status not in first CR at first HSCT (odds ratio [OR], 1.31; 95% confidence interval [CI], 1.04 to 1.64; P = .02) and the use of post-transplantation cyclophosphamide (OR, 2.23; 95% CI, 1.21 to 4.14; P = .01). Chronic GVHD appeared to be a protective factor (OR, .64; 95% CI, .42 to .96; P = .04). The prognosis of LR is better than in early relapse, with a median OS after LR of 19.9 months. Salvage therapy associated with a second AHSCT improves outcome and is feasible, without creating excess toxicity

    Editorial

    No full text
    Numéro de revue à comitéPrésentation du n° 2 de la revue Eclats, revue des doctorants et doctorantes de l'ED 592 LECLA. Présentation du dossier thématique et des autres contributions de la revue

    Editorial

    No full text
    Numéro de revue à comitéPrésentation du n° 2 de la revue Eclats, revue des doctorants et doctorantes de l'ED 592 LECLA. Présentation du dossier thématique et des autres contributions de la revue
    • 

    corecore